Projective wellorder with the tree property

Radek Honzik

Charles University, Faculty of Arts (FF UK), Department of Logic logika.ff.cuni.cz/radek

Hejnice January 30, 2019

Definition

Let M be a transitive model of set theory. We say that there is a projective wellorder of $H(\omega_1)$ in M if there is a formula $\varphi(v, u)$ with the free variables shown which defines a wellorder of $H(\omega_1)$:

 $M \models$ "{ $(x, y) \mid H(\omega_1) \models \varphi(x, y)$ } is a wellorder of $H(\omega_1)$ ".

Definition

Let M be a transitive model of set theory. We say that there is a projective wellorder of $H(\omega_1)$ in M if there is a formula $\varphi(v, u)$ with the free variables shown which defines a wellorder of $H(\omega_1)$:

 $M \models$ "{ $(x, y) \mid H(\omega_1) \models \varphi(x, y)$ } is a wellorder of $H(\omega_1)$ ".

If φ has no parameters from $H(\omega_1)^M$, the definition is called parameter-free or lightface; otherwise is it called boldface.

Definition

Let M be a transitive model of set theory. We say that there is a projective wellorder of $H(\omega_1)$ in M if there is a formula $\varphi(v, u)$ with the free variables shown which defines a wellorder of $H(\omega_1)$:

 $M \models$ "{ $(x, y) \mid H(\omega_1) \models \varphi(x, y)$ } is a wellorder of $H(\omega_1)$ ".

If φ has no parameters from $H(\omega_1)^M$, the definition is called parameter-free or lightface; otherwise is it called boldface.

Remark. $H(\omega_1)$ contains all the reals (subsets of ω). We can often consider just a wellorder of the reals (with definability in $H(\omega_1)$ or in the second-order arithmetics).

Fact

There is a lightface projective wellorder of the reals in L (defined by a Σ_1 formula φ).

Fact

There is a lightface projective wellorder of the reals in L (defined by a Σ_1 formula φ).

The formula φ contains an existential quantifier over countable transitive models of V = L (in the second-order arithmetics, the definition is Σ_2^1 because we need say "there is a well-founded binary relation on ω " which is Σ_2^1).

Fact

There is a lightface projective wellorder of the reals in L (defined by a Σ_1 formula φ).

The formula φ contains an existential quantifier over countable transitive models of V = L (in the second-order arithmetics, the definition is Σ_2^1 because we need say "there is a well-founded binary relation on ω " which is Σ_2^1).

Notice that CH holds in L, and hence in L:

 $(*) \quad |H(\omega_1)| = \omega_1.$

Question. Is an *L*-like model, or at least (*), essential for projective definability?

The answer is negative: for instance Harrington showed already in 1976 that it is consistent that 2^{ω} is arbitrarily large and there is a lightface projective (in fact Δ_3^1) wellorder of the reals.

The answer is negative: for instance Harrington showed already in 1976 that it is consistent that 2^{ω} is arbitrarily large and there is a lightface projective (in fact Δ_3^1) wellorder of the reals.

This shows that it is possible to "recreate" some of the nice properties of L-like models (definable wellorder, squares, etc.) in otherwise "fatter" models.

The answer is negative: for instance Harrington showed already in 1976 that it is consistent that 2^{ω} is arbitrarily large and there is a lightface projective (in fact Δ_3^1) wellorder of the reals.

This shows that it is possible to "recreate" some of the nice properties of L-like models (definable wellorder, squares, etc.) in otherwise "fatter" models.

Aims. One of the important criteria for "fatness" is an amount of compactness which is exhibited by small cardinals such as \aleph_2 , in particular if they imply $\neg CH$ (and thus $V \neq L$). Another criterion is the forcing axioms.

We consider the following result and discuss methods for its solution (an ongoing work).

Tentative theorem (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that $2^{\omega} = \omega_2$, there is a Δ_3^1 welloder of reals, and the tree property holds at ω_2 .^a If so required, Martin's Axiom can hold as well.

^aPossibly some other favorite compactness principle. The tree property at ω_2 prohibits the existence of ω_2 -Aronszajn trees.

Let us discuss how to achieve a weaker result:

Claim (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that $2^{\omega} = \omega_2$, there is a wellorder of $H(\omega_2)$ lightfact definable in $H(\omega_2)$, and the tree property holds at ω_2 . If required Martin's axiom can hold as well.

Definability in $H(\omega_2)$ allows, in particular, quantification over subsets of ω_1 .

(1) Start with a nice model, such as *L*, and fix a long enough locally *L*-definable sequence $\vec{S} = \langle S_{\alpha} | \alpha < \mu \rangle$ of objects which will be used to code the wellorder. These objects should be hard to kill unless one uses a specific well-picked forcing (stationary sets, Souslin trees, etc.).

- Start with a nice model, such as L, and fix a long enough locally L-definable sequence S
 = (S_α | α < μ) of objects which will be used to code the wellorder. These objects should be hard to kill unless one uses a specific well-picked forcing (stationary sets, Souslin trees, etc.).
- 2 Design an iteration which will add new reals while coding their order by means of selective kills of the elements S_{α} in \vec{S} .

- Start with a nice model, such as L, and fix a long enough locally L-definable sequence S
 = (S_α | α < μ) of objects which will be used to code the wellorder. These objects should be hard to kill unless one uses a specific well-picked forcing (stationary sets, Souslin trees, etc.).
- 2 Design an iteration which will add new reals while coding their order by means of selective kills of the elements S_{α} in \vec{S} .
- 3 Read off the wellorder from the objects in \vec{S} note that L is lightface definable in any transitive model, and so is \vec{S} – checking whether the relevant S_{α} 's have been killed or not (for instance whether they are still stationary in the generic extension).

Example. Let $\vec{S} = \langle S_{\alpha} | \alpha < \omega_2 \rangle$ be an $H(\omega_2)^L$ -definable sequence of almost disjoint stationary/ costationary subsets of ω_1 . S_{α} cannot be killed (S_{α} is killed if its complement contains a club in the generic extension) by any proper forcing, but can be killed by a relatively well-behaved non-collapsing ω_1 -distributive forcing. Such an \vec{S} can be used to code a wellorder of up to ω_2 -many reals in $H(\omega_2)$: to read off the wellorder we need to quantify over elements of \vec{S} . **Example.** Let $\vec{S} = \langle S_{\alpha} | \alpha < \omega_2 \rangle$ be an $H(\omega_2)^L$ -definable sequence of almost disjoint stationary/ costationary subsets of ω_1 . S_{α} cannot be killed (S_{α} is killed if its complement contains a club in the generic extension) by any proper forcing, but can be killed by a relatively well-behaved non-collapsing ω_1 -distributive forcing. Such an \vec{S} can be used to code a wellorder of up to ω_2 -many reals in $H(\omega_2)$: to read off the wellorder we need to quantify over elements of \vec{S} .

Remark. An extra localization forcing (and some refinement of the method) is needed to express this wellorder in $H(\omega_1)$. We will omit this here.

Recall our goal:

Claim (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that $2^{\omega} = \omega_2$, there is a wellorder of $H(\omega_2)$ lightfact definable in $H(\omega_2)$, and the tree property holds at ω_2 . If required Martin's axiom can hold as well.

Recall our goal:

Claim (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that $2^{\omega} = \omega_2$, there is a wellorder of $H(\omega_2)$ lightfact definable in $H(\omega_2)$, and the tree property holds at ω_2 . If required Martin's axiom can hold as well.

Problem. The general method described above cannot be applied to prove the Claim because ω_2 having the tree property implies that $\omega_2 = \kappa$ is weakly compact in *L*. In particular there are not sufficiently many stationary subsets of ω_1 (or of any fixed $\lambda < \kappa$) in *L* to code the wellorder of κ -many reals.

We will use a suitable sequence S
 ⁻ = ⟨S_α | α < κ⟩ of stationary/costationary subsets of β⁺ ∩ cof(ω), where β < κ ranges over inaccessible cardinals.

- We will use a suitable sequence S
 ⁻ = ⟨S_α | α < κ⟩ of stationary/costationary subsets of β⁺ ∩ cof(ω), where β < κ ranges over inaccessible cardinals.
- \vec{S} is lightface definable in $H(\kappa)^L$.

- We will use a suitable sequence S
 ⁻ = ⟨S_α | α < κ⟩ of stationary/costationary subsets of β⁺ ∩ cof(ω), where β < κ ranges over inaccessible cardinals.
- \vec{S} is lightface definable in $H(\kappa)^{L}$.
- The elements of \vec{S} can be selectively killed without collapsing cardinals (and without coding wrong information) by shooting clubs through intervals $(\beta, \beta^+), \beta < \kappa$ inaccessible. This uses the mutual stationarity/costationarity of the S_{α} 's: a notion introduced by Foreman and Magidor in 2001 (Acta Math.); by a result in their paper, any sequence of stationary subsets of cof ω ordinals is mutually stationary.

 Our forcing P is an iteration of length κ with countable support which achieves several things: Our forcing P is an iteration of length κ with countable support which achieves several things:

• Preserves ω_1 and turns κ into ω_2 .

- Our forcing P is an iteration of length κ with countable support which achieves several things:
 - Preserves ω_1 and turns κ into ω_2 .
 - Selectively kills the S_α's to code the initial segments of the P-generic filter G (from G it is possible to read off the welloder of H(ω₂)^{L[G]}). Note: The inaccessible cardinals β < κ, on which S_α's live, will have size ω₁ in L[G]; however, they will have cofinality ω₁, so decoding can be meaningfully defined.

- Our forcing P is an iteration of length κ with countable support which achieves several things:
 - Preserves ω_1 and turns κ into ω_2 .
 - Selectively kills the S_α's to code the initial segments of the P-generic filter G (from G it is possible to read off the welloder of H(ω₂)^{L[G]}). Note: The inaccessible cardinals β < κ, on which S_α's live, will have size ω₁ in L[G]; however, they will have cofinality ω₁, so decoding can be meaningfully defined.
 - At stage α guesses (by using a Π_1^1 -diamond) initial segments T_{α} of a hypothetical $\kappa = \omega_2$ -Aronszajn tree T in L[G], adds new reals, collapses the current $\omega_2 = \alpha$ to ω_1 and specializes T_{α} (an argument reminiscent of the argument that PFA implies the tree property).

- Our forcing P is an iteration of length κ with countable support which achieves several things:
 - Preserves ω_1 and turns κ into ω_2 .
 - Selectively kills the S_α's to code the initial segments of the P-generic filter G (from G it is possible to read off the welloder of H(ω₂)^{L[G]}). Note: The inaccessible cardinals β < κ, on which S_α's live, will have size ω₁ in L[G]; however, they will have cofinality ω₁, so decoding can be meaningfully defined.
 - At stage α guesses (by using a Π_1^1 -diamond) initial segments T_{α} of a hypothetical $\kappa = \omega_2$ -Aronszajn tree T in L[G], adds new reals, collapses the current $\omega_2 = \alpha$ to ω_1 and specializes T_{α} (an argument reminiscent of the argument that PFA implies the tree property).
 - If so required, \mathbb{P} ensures Martin's axiom in L[G].

Localization forcing needs to be integrated with $\mathbb P$ to achieve the tentative theorem discussed above:

Tentative theorem (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that $2^{\omega} = \omega_2$, there is a Δ_3^1 welloder of reals, and the tree property holds at ω_2 .^a If so required, Martin's Axiom can hold as well.

^aPossibly some other favorite compactness principle. The tree property at ω_2 prohibits the existence of ω_2 -Aronszajn trees.

Open questions.

Open questions.

1) Is it possible to have the result with $2^{\omega} > \omega_2$?

Open questions.

- (1) Is it possible to have the result with $2^{\omega} > \omega_2$?
- ② Is it possible to push this result, with suitable modifications, up one cardinal: to start with, to have the tree property at ω_3 with the wellorder of $H(\omega_3)$ definable in $H(\omega_3)$? This seems hard because we are leaving the realm of proper (or *S*-proper) iterations.

Thank you for your attention.