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Definition

Let M be a transitive model of set theory. We say that there is a
projective wellorder of H(ω1) in M if there is a formula ϕ(v , u)
with the free variables shown which defines a wellorder of H(ω1):

M |= “{(x , y) | H(ω1) |= ϕ(x , y)} is a wellorder of H(ω1)”.

If ϕ has no parameters from H(ω1)M , the definition is called
parameter-free or lightface; otherwise is it called boldface.

Remark. H(ω1) contains all the reals (subsets of ω). We can
often consider just a wellorder of the reals (with definability in
H(ω1) or in the second-order arithmetics).
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Fact

There is a lightface projective wellorder of the reals in L (defined
by a Σ1 formula ϕ).

The formula ϕ contains an existential quantifier over countable
transitive models of V = L (in the second-order arithmetics, the
definition is Σ1

2 because we need say “there is a well-founded
binary relation on ω” which is Σ1

2).

Notice that CH holds in L, and hence in L:

(∗) |H(ω1)| = ω1.

Question. Is an L-like model, or at least (∗), essential for
projective definability?
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The answer is negative: for instance Harrington showed already in
1976 that it is consistent that 2ω is arbitrarily large and there is a
lightface projective (in fact ∆1

3) wellorder of the reals.

This shows that it is possible to “recreate” some of the nice
properties of L-like models (definable wellorder, squares, etc.) in
otherwise “fatter” models.

Aims. One of the important criteria for “fatness” is an amount of
compactness which is exhibited by small cardinals such as ℵ2, in
particular if they imply ¬CH (and thus V 6= L). Another criterion
is the forcing axioms.
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We consider the following result and discuss methods for its
solution (an ongoing work).

Tentative theorem (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that 2ω = ω2,
there is a ∆1

3 welloder of reals, and the tree property holds at ω2.a

If so required, Martin’s Axiom can hold as well.

aPossibly some other favorite compactness principle. The tree property at ω2

prohibits the existence of ω2-Aronszajn trees.
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Let us discuss how to achieve a weaker result:

Claim (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that 2ω = ω2, there
is a wellorder of H(ω2) lightfact definable in H(ω2), and the tree
property holds at ω2. If required Martin’s axiom can hold as well.

Definability in H(ω2) allows, in particular, quantification over
subsets of ω1.
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There is a general method of obtaining nice definability:

1 Start with a nice model, such as L, and fix a long enough
locally L-definable sequence ~S = 〈Sα |α < µ〉 of objects which
will be used to code the wellorder. These objects should be
hard to kill unless one uses a specific well-picked forcing
(stationary sets, Souslin trees, etc.).

2 Design an iteration which will add new reals while coding their
order by means of selective kills of the elements Sα in ~S .

3 Read off the wellorder from the objects in ~S – note that L is
lightface definable in any transitive model, and so is ~S –
checking whether the relevant Sα’s have been killed or not
(for instance whether they are still stationary in the generic
extension).
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Example. Let ~S = 〈Sα |α < ω2〉 be an H(ω2)L-definable sequence
of almost disjoint stationary/ costationary subsets of ω1. Sα
cannot be killed (Sα is killed if its complement contains a club in
the generic extension) by any proper forcing, but can be killed by a
relatively well-behaved non-collapsing ω1-distributive forcing. Such
an ~S can be used to code a wellorder of up to ω2-many reals in
H(ω2): to read off the wellorder we need to quantify over elements
of ~S .

Remark. An extra localization forcing (and some refinement of
the method) is needed to express this wellorder in H(ω1). We will
omit this here.
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Recall our goal:

Claim (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that 2ω = ω2, there
is a wellorder of H(ω2) lightfact definable in H(ω2), and the tree
property holds at ω2. If required Martin’s axiom can hold as well.

Problem. The general method described above cannot be applied
to prove the Claim because ω2 having the tree property implies
that ω2 = κ is weakly compact in L. In particular there are not
sufficiently many stationary subsets of ω1 (or of any fixed λ < κ)
in L to code the wellorder of κ-many reals.
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Hints for solution.

We will use a suitable sequence ~S = 〈Sα |α < κ〉 of
stationary/costationary subsets of β+ ∩ cof(ω), where β < κ
ranges over inaccessible cardinals.
~S is lightface definable in H(κ)L.

The elements of ~S can be selectively killed without collapsing
cardinals (and without coding wrong information) by shooting
clubs through intervals (β, β+), β < κ inaccessible. This uses
the mutual stationarity/costationarity of the Sα’s: a notion
introduced by Foreman and Magidor in 2001 (Acta Math.); by
a result in their paper, any sequence of stationary subsets of
cof ω ordinals is mutually stationary.
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R. Honźık Projective wellorder with the tree property



Hints for solution.

We will use a suitable sequence ~S = 〈Sα |α < κ〉 of
stationary/costationary subsets of β+ ∩ cof(ω), where β < κ
ranges over inaccessible cardinals.
~S is lightface definable in H(κ)L.

The elements of ~S can be selectively killed without collapsing
cardinals (and without coding wrong information) by shooting
clubs through intervals (β, β+), β < κ inaccessible. This uses
the mutual stationarity/costationarity of the Sα’s: a notion
introduced by Foreman and Magidor in 2001 (Acta Math.); by
a result in their paper, any sequence of stationary subsets of
cof ω ordinals is mutually stationary.
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Our forcing P is an iteration of length κ with countable
support which achieves several things:

Preserves ω1 and turns κ into ω2.
Selectively kills the Sα’s to code the initial segments of the
P-generic filter G (from G it is possible to read off the welloder
of H(ω2)L[G ]). Note: The inaccessible cardinals β < κ, on
which Sα’s live, will have size ω1 in L[G ]; however, they will
have cofinality ω1, so decoding can be meaningfully defined.
At stage α guesses (by using a Π1

1-diamond) initial segments
Tα of a hypothetical κ = ω2-Aronszajn tree T in L[G ], adds
new reals, collapses the current ω2 = α to ω1 and specializes
Tα (an argument reminiscent of the argument that PFA
implies the tree property).
If so required, P ensures Martin’s axiom in L[G ].
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Localization forcing needs to be integrated with P to achieve the
tentative theorem discussed above:

Tentative theorem (Friedman, H., Stejskalova (2019))

It is consistent from a weakly compact cardinal that 2ω = ω2,
there is a ∆1

3 welloder of reals, and the tree property holds at ω2.a

If so required, Martin’s Axiom can hold as well.

aPossibly some other favorite compactness principle. The tree property at ω2

prohibits the existence of ω2-Aronszajn trees.
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Open questions.

1 Is it possible to have the result with 2ω > ω2?

2 Is it possible to push this result, with suitable modifications,
up one cardinal: to start with, to have the tree property at ω3

with the wellorder of H(ω3) definable in H(ω3)? This seems
hard because we are leaving the realm of proper (or S-proper)
iterations.

R. Honźık Projective wellorder with the tree property



Open questions.

1 Is it possible to have the result with 2ω > ω2?

2 Is it possible to push this result, with suitable modifications,
up one cardinal: to start with, to have the tree property at ω3

with the wellorder of H(ω3) definable in H(ω3)? This seems
hard because we are leaving the realm of proper (or S-proper)
iterations.
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Thank you for your attention.
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